Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biol Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666334

RESUMO

T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.

2.
Cell Rep Med ; 4(7): 101125, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467715

RESUMO

Acute graft-versus-host disease (aGvHD) is a significant complication after allogeneic hematopoietic stem cell transplantation (aHSCT), but major factors determining disease severity are not well defined yet. By combining multiplexed tissue imaging and single-cell RNA sequencing on gastrointestinal biopsies from aHSCT-treated individuals with fecal microbiome analysis, we link high microbiome diversity and the abundance of short-chain fatty acid-producing bacteria to the sustenance of suppressive regulatory T cells (Tregs). Furthermore, aGvHD severity strongly associates with the clonal expansion of mainly CD8 T cells, which we find distributed over anatomically distant regions of the gut, persistent over time, and inversely correlated with the presence of suppressive Tregs. Overall, our study highlights the pathophysiological importance of expanded CD8 T cell clones in the progression of aGvHD toward more severe clinical manifestations and strongly supports the further development of microbiome interventions as GvHD treatment via repopulation of the gut Treg niche to suppress inflammation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Doença Enxerto-Hospedeiro/patologia , Microbiota/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Trato Gastrointestinal/patologia , Linfócitos T CD8-Positivos/patologia
3.
Proc Natl Acad Sci U S A ; 120(10): e2200626120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853939

RESUMO

Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach. However, since PD-1 might also be required for the regulation of physiological T cell function and differentiation, the suitability of PD-1 as an engineering target is controversial. In this study, we systematically investigated the maintenance of T cell functionality after CRISPR/Cas9-mediated PD-1 KO in vivo during and after acute and chronic antigen encounter. Under all tested conditions, PD-1 ablation preserved the persistence, differentiation, and memory formation of adoptively transferred receptor transgenic T cells. Functional PD-1 KO T cells expressing chimeric antigen receptors (CARs) targeting CD19 could be robustly detected for over 390 d in a syngeneic immunocompetent mouse model, in which constant antigen exposure was provided by continuous B cell renewal, representing the longest in vivo follow-up of CAR-T cells described to date. PD-1 KO CAR-T cells showed no evidence for malignant transformation during the entire observation period. Our data demonstrate that genetic ablation of PD-1 does not impair functionality and longevity of adoptively transferred T cells per se and therefore may be pursued more generally in engineered T cell-based immunotherapy to overcome a central immunosuppressive axis.


Assuntos
Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Camundongos , Receptor de Morte Celular Programada 1/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais Geneticamente Modificados , Anticorpos Bloqueadores
4.
Microbiol Spectr ; 11(1): e0316522, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622140

RESUMO

The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity. We measured IgG levels against SARS-CoV-2 spike protein (S), its S2 subunit, the S1 receptor binding domain (RBD), and the full length and C terminus of nucleocapsid (N) protein by Luminex, and against RBD by enzyme-linked immunosorbent assay (ELISA), and assessed those as predictors of plasma surrogate-neutralizing activity measured by a flow cytometry assay. In addition, we determined the clinical and demographic factors affecting plasma surrogate-neutralizing capacity. Both cohorts showed a high positive correlation between IgG levels to S antigen, especially to RBD, and the levels of plasma surrogate-neutralizing activity, suggesting RBD IgG as a good correlate of plasma neutralizing activity. Symptomatic infection, with symptoms such as loss of taste, dyspnea, rigors, fever and fatigue, was positively associated with anti-RBD IgG positivity by ELISA and Luminex, and with plasma surrogate-neutralizing activity. Our serological assays allow for the prediction of serum neutralization activity without the cost, hazards, time, and expertise needed for surrogate or conventional neutralization assays. Once a cutoff is established, these relatively simple high-throughput antibody assays will provide a fast and cost-effective method of assessing levels of protection from SARS-CoV-2 infection. IMPORTANCE Neutralizing antibody titers are the best correlate of protection against SARS-CoV-2. However, current tests to measure plasma or serum neutralizing activity do not allow high-throughput screening at the population level. Serological tests could be an alternative if they are proved to be good predictors of plasma neutralizing activity. In this study, we analyzed the SARS-CoV-2 serological profiles of two cohorts of health care workers by applying Luminex and ELISA in-house serological assays. Correlations of both serological tests were assessed between them and with a flow cytometry assay to determine plasma surrogate-neutralizing activity. Both assays showed a high positive correlation between IgG levels to S antigens, especially RBD, and the levels of plasma surrogate-neutralizing activity. This result suggests IgG to RBD as a good correlate of plasma surrogate-neutralizing activity and indicates that serology of IgG to RBD could be used to assess levels of protection from SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes , Pessoal de Saúde , Imunoglobulina G , Anticorpos Antivirais
5.
Front Immunol ; 14: 1268698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274808

RESUMO

Adoptive immunotherapy based on chimeric antigen receptor (CAR)-engineered T cells has exhibited impressive clinical efficacy in treating B-cell malignancies. However, the potency of CAR-T cells carriethe potential for significant on-target/off-tumor toxicities when target antigens are shared with healthy cells, necessitating the development of complementary safety measures. In this context, there is a need to selectively eliminate therapeutically administered CAR-T cells, especially to revert long-term CAR-T cell-related side effects. To address this, we have developed an effective cellular-based safety mechanism to specifically target and eliminate the transferred CAR-T cells. As proof-of-principle, we have designed a secondary CAR (anti-CAR CAR) capable of recognizing a short peptide sequence (Strep-tag II) incorporated into the hinge domain of an anti-CD19 CAR. In in vitro experiments, these anti-CAR CAR-T cells have demonstrated antigen-specific cytokine release and cytotoxicity when co-cultured with anti-CD19 CAR-T cells. Moreover, in both immunocompromised and immunocompetent mice, we observed the successful depletion of anti-CD19 CAR-T cells when administered concurrently with anti-CAR CAR-T cells. We have also demonstrated the efficacy of this safeguard mechanism in a clinically relevant animal model of B-cell aplasia induced by CD19 CAR treatment, where this side effect was reversed upon anti-CAR CAR-T cells infusion. Notably, efficient B-cell recovery occurred even in the absence of any pre-conditioning regimens prior anti-CAR CAR-T cells transfer, thus enhancing its practical applicability. In summary, we developed a robust cellular safeguard system for selective in vivo elimination of engineered T cells, offering a promising solution to address CAR-T cell-related on-target/off-tumor toxicities.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva , Linfócitos B
6.
Vaccines (Basel) ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36298482

RESUMO

The importance of T cells in controlling SARS-CoV-2 infections has been demonstrated widely, but insights into the quality of these responses are still limited due to technical challenges. Indeed, understanding the functionality of the T-cell receptor (TCR) repertoire of a polyclonal antigen-specific population still requires the tedious work of T-cell cloning or TCR re-expression and subsequent characterization. In this work, we show that it is possible to discriminate highly functional and bystander TCRs based on gene signatures of T-cell activation induced by recent peptide stimulation. SARS-CoV-2-specific TCRs previously identified by cytokine release after peptide restimulation and subsequent single-cell RNA sequencing were re-expressed via CRISPR-Cas9-mediated gene editing into a Jurkat-based reporter cell line system suitable for high-throughput screening. We could observe differences in SARS-CoV-2 epitope recognition as well as a wide range of functional avidities. By correlating these in vitro TCR engineered functional data with the transcriptomic profiles of the corresponding TCR-expressing parental T cells, we could validate that gene signatures of recent T-cell activation accurately identify and predict truly SARS-CoV-2-specific TCRs. In summary, this work paves the way for alternative approaches useful for the functional analysis of global antigen-specific TCR repertoires with largely improved throughput.

7.
STAR Protoc ; 3(4): 101699, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36152303

RESUMO

The quality of an antigen-specific CD8+ T cell repertoire is crucial for the clearance of intracellular pathogens, in particular for viral infections. Here, we describe killing assays to determine the function of CD8+ T cells engineered with SARS-CoV-2-specific T cell receptors in a near-physiological system for antigen presentation. We detail the use of target cells either infected with replicating SARS-CoV-2 virus or engineered with SARS-CoV-2 open reading frames. For complete details on the use and execution of this protocol, please refer to Moosmann et al. (2022) and Wagner et al. (2022).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Linfócitos T CD8-Positivos , Apresentação de Antígeno , Animais Geneticamente Modificados , Morte Celular
8.
Sci Immunol ; 7(74): eabm2077, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960818

RESUMO

T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma. To this end, we used polyclonal T cell transfers with in-depth characterized TCRs together with flow cytometric phenotyping in mice inoculated with MC38 OVA tumors. Transfer of T cells from retrogenic mice harboring TCRs with high avidity resulted in best tumor protection. Unexpectedly, we found that both high- and low-avidity T cells are similarly abundant within the tumor and adopt concordant phenotypic signs of exhaustion. Outside the tumor, high-avidity TCR T cells were not generally overrepresented but, instead, selectively enriched in T cell populations with intermediate PD-1 protein expression. Single-cell sequencing of neoantigen-specific T cells from two patients with melanoma-combined with transgenic reexpression of identified TCRs by CRISPR-Cas9-mediated orthotopic TCR replacement-revealed high-functionality TCRs to be enriched in T cells with RNA signatures of recent activation. Furthermore, of 130 surface protein candidates, PD-1 surface expression was most consistently enriched in functional TCRs. Together, our findings show that tumor-reactive TCRs with high protective capacity circulating in peripheral blood are characterized by a signature of recent activation.


Assuntos
Melanoma , Receptores de Antígenos de Linfócitos T , Animais , Antígenos de Neoplasias , Humanos , Camundongos , Linfócitos T/metabolismo
9.
PLoS One ; 17(5): e0268530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613127

RESUMO

BACKGROUND: COVID-19 has so far affected more than 250 million individuals worldwide, causing more than 5 million deaths. Several risk factors for severe disease have been identified, most of which coincide with advanced age. In younger individuals, severe COVID-19 often occurs in the absence of obvious comorbidities. Guided by the finding of cytomegalovirus (CMV)-specific T cells with some cross-reactivity to SARS-CoV-2 in a COVID-19 intensive care unit (ICU) patient, we decided to investigate whether CMV seropositivity is associated with severe or critical COVID-19. Herpes simplex virus (HSV) serostatus was investigated as control. METHODS: National German COVID-19 bio-sample and data banks were used to retrospectively analyze the CMV and HSV serostatus of patients who experienced mild (n = 101), moderate (n = 130) or severe to critical (n = 80) disease by IgG serology. We then investigated the relationship between disease severity and herpesvirus serostatus via statistical models. RESULTS: Non-geriatric patients (< 60 years) with severe COVID-19 were found to have a very high prevalence of CMV-seropositivity, while CMV status distribution in individuals with mild disease was similar to the prevalence in the German population; interestingly, this was not detectable in older patients. Prediction models support the hypothesis that the CMV serostatus, unlike HSV, might be a strong biomarker in identifying younger individuals with a higher risk of developing severe COVID-19, in particular in absence of other co-morbidities. CONCLUSIONS: We identified 'CMV-seropositivity' as a potential novel risk factor for severe COVID-19 in non-geriatric individuals in the studied cohorts. More mechanistic analyses as well as confirmation of similar findings in cohorts representing the currently most relevant SARS-CoV-2 variants should be performed shortly.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Herpes Simples , Idoso , Anticorpos Antivirais , COVID-19/epidemiologia , Citomegalovirus , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/epidemiologia , Humanos , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
10.
STAR Protoc ; 3(2): 101374, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35586313

RESUMO

In this protocol, we describe the use of ChipCytometry to combine RNA in situ hybridization and antibody staining for multiplexed tissue imaging of human formalin-fixed and paraffin-embedded tissue samples. The advantages of ChipCytometry are long-term storage for re-interrogation and advanced image quality by high dynamic range imaging of staining and background. A titrated pretreatment of tissue samples bypasses challenges because of the retrieval of antigens on coverslips and achieves an optimal staining quality at the minimal expense of tissue integrity. For complete details on the use and execution of this protocol, please refer to Jarosch et al. (2021).


Assuntos
Formaldeído , RNA , Humanos , Hibridização In Situ , RNA/genética , RNA Mensageiro/genética
11.
Eur J Immunol ; 52(4): 582-596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099805

RESUMO

The avidity of TCRs for peptide-major histocompatibility complexes (pMHCs) is a governing factor in how T cells respond to antigen. TCR avidity is generally linked to T-cell functionality and there is growing evidence for distinct roles of low and high avidity T cells in different phases of immune responses. While physiological immune responses and many therapeutic T-cell products targeting infections or cancers consist of polyclonal T-cell populations with a wide range of individual avidities, the role of T-cell avidity is usually investigated only in monoclonal experimental settings. In this report, we induced polyclonal T-cell responses with a wide range of avidities toward a model epitope by altered peptide ligands, and benchmarked global avidity of physiological polyclonal populations by investigation of TCR-pMHC koff -rates. We then investigated how varying sizes and avidities of monoclonal subpopulations translate into global koff -rates. Global koff -rates integrate subclonal avidities in a predictably weighted manner and robustly correlate with the functionality of murine polyclonal T-cell populations in vitro and in vivo. Surveying the full avidity spectrum is essential to accurately assess polyclonal immune responses and inform the design of polyclonal T-cell therapeutics.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Antígenos , Complexo Principal de Histocompatibilidade , Camundongos , Peptídeos , Receptores de Antígenos de Linfócitos T/genética
12.
Cell Rep ; 38(2): 110214, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34968416

RESUMO

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Adulto , Células Cultivadas , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Citotóxicos/imunologia
13.
J Clin Med ; 10(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830550

RESUMO

Deficiencies in smell and taste are common symptoms of COVID-19. Quantitative losses are well surveyed. This study focuses on qualitative changes such as phantosmia (hallucination of smell), parosmia (alteration of smell), and dysgeusia (alteration of taste) and possible connections with the adaptive immune system. Subjective experience of deficiency in taste and smell was assessed by two different questionnaires after a median of 100 and 244 days after first positive RT-PCR test. SARS-CoV-2-specific antibody levels were measured with the iFlash-SARS-CoV-2 assay. After 100 days a psychophysical screening test for olfactory and gustatory dysfunction was administered. 30 of 44 (68.2%) participants reported a chemosensory dysfunction (14 quantitative, 6 qualitative, 10 quantitative, and qualitative) during COVID-19, eleven (25.0%) participants (1 quantitative, 7 qualitative, 3 quantitative, and quantity) after 100 days, and 14 (31.8%) participants (1 quantitative, 10 qualitative, 3 quantitative and qualitative) after 244 days. Four (9.1%) participants, who were symptom-free after 100 days reported now recently arisen qualitative changes. Serological and T-cell analysis showed no correlation with impairment of taste and smell. In conclusion, qualitative changes can persist for several months and occur as late-onset symptoms months after full recovery from COVID-19-induced quantitative losses in taste and smell.

14.
Hemasphere ; 5(7): e603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235400

RESUMO

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

15.
Nat Commun ; 12(1): 4515, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312385

RESUMO

The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


Assuntos
COVID-19/imunologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linfócitos T/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , COVID-19/epidemiologia , COVID-19/virologia , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/fisiologia , Linfócitos T/virologia
16.
Cell Rep Methods ; 1(7): 100104, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35475000

RESUMO

Deciphering the spatial composition of cells in tissues is essential for detailed understanding of biological processes in health and disease. Recent technological advances enabled the assessment of the enormous complexity of tissue-derived parameters by highly multiplexed tissue imaging (HMTI), but elaborate machinery and data analyses are required. This severely limits broad applicability of HMTI. Here we demonstrate for the first time the application of ChipCytometry technology, which has unique features for widespread use, on formalin-fixed paraffin-embedded samples, the most commonly used storage technique of clinically relevant patient specimens worldwide. The excellent staining quality permits workflows for automated quantification of signal intensities, which we further optimized to compensate signal spillover from neighboring cells. In combination with the high number of validated markers, the reported platform can be used from unbiased analyses of tissue composition to detection of phenotypically complex rare cells, and can be easily implemented in both routine research and clinical pathology.


Assuntos
Formaldeído , Humanos , Fixação de Tecidos/métodos , Inclusão em Parafina/métodos
17.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171940

RESUMO

T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia Adotiva/tendências , Neoplasias/genética , Medicina de Precisão/métodos , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
18.
Cancer Immunol Immunother ; 68(10): 1701-1712, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542797

RESUMO

Since the first bone marrow transplantation, adoptive T cell therapy (ACT) has developed over the last 80 years to a highly efficient and specific therapy for infections and cancer. Genetic engineering of T cells with antigen-specific receptors now provides the possibility of generating highly defined and efficacious T cell products. The high sensitivity of engineered T cells towards their targets, however, also bears the risk of severe off-target toxicities. Therefore, different safety strategies for engineered T cells have been developed that enable removal of the transferred cells in case of adverse events, control of T cell activity or improvement of target selectivity. Receptor avidity is a crucial component in the balance between safety and efficacy of T cell products. In clinical trials, T cells equipped with high avidity T cell receptor (TCR)/chimeric antigen receptor (CAR) have been mostly used so far because of their faster and better response to antigen recognition. However, over-activation can trigger T cell exhaustion/death as well as side effects due to excessive cytokine production. Low avidity T cells, on the other hand, are less susceptible to over-activation and could possess better selectivity in case of tumor antigens shared with healthy tissues, but complete tumor eradication may not be guaranteed. In this review we describe how 'optimal' TCR/CAR affinity can increase the safety/efficacy balance of engineered T cells, and discuss simultaneous or sequential infusion of high and low avidity receptors as further options for efficacious but safe T cell therapy.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Afinidade de Anticorpos , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos
19.
Sci Rep ; 8(1): 12252, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115973

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive neoplasia lacking the expression of hormonal receptors and human epidermal growth factor receptor-2. Accumulating evidence has highlighted the importance of miRNAs dysregulation in the establishment of cancer programs, but the functional role of many miRNAs remains unclear. The description of miRNAs roles might provide novel strategies for treatment. In the present work, an integrated analysis of miRNA transcriptional landscape was performed (N = 132), identifying the significant down-modulation of miR-342-3p in TNBC, probably because of the aberrant activity of estrogen receptor, which serves as a transcription factor of the miRNA, as demonstrated by a siRNA-knockdown approach. The enhanced expression of miR-342-3p significantly decreased cell proliferation, viability and migration rates of diverse TN cells in vitro. Bioinformatic and functional analyses revealed that miR-342-3p directly targets the monocarboxylate transporter 1 (MCT1), which promotes lactate and glucose fluxes alteration, thus disrupting the metabolic homeostasis of tumor cells. Optical metabolic imaging assay defined a higher optical redox ratio in glycolytic cells overexpressing miR-342-3p. Furthermore, we found that hypoxic conditions and glucose starvation attenuate miR-342-3p expression, suggesting a crosstalk program between these metabolic factors. Consistently, miR-342-3p down-modulation is associated with an increased MCT1 expression level and glycolytic score in human triple negative tumors. Overall, we described for the first time the regulatory activity of miR-342-3p on relevant metabolic carcinogenic pathways in TN breast cancers.


Assuntos
Carcinogênese , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Glucose/metabolismo , Glicólise , Homeostase/genética , Humanos , Ácido Láctico/metabolismo , Fosforilação Oxidativa , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Oncotarget ; 9(46): 27920-27928, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963251

RESUMO

Trastuzumab is the standard treatment for HER2+ breast cancer (BC) patients, and even though it significantly improved their clinical outcome, 50% of them do not benefit from this drug and disease recurs, underlining the need of reliable predictive biomarkers and new therapeutic strategies. Strikingly, despite all the molecular analyses performed to identify the escape mechanisms behind this resistance, it still represents a question point. MiRNAs have been correlated with occurrence and progression of human cancer, and their potential as clinical tools has emerged in the last years. We previously reported that oncosuppressive miR-205 targets HER3, thus increasing the responsiveness to TKIs lapatinib and gefitinib in preclinical models. Here we demonstrate that HER3 inhibition by miR-205 ectopic expression or siRNA-mediated silencing improves the responsiveness to Trastuzumab in vitro in HER2+ BC cell lines, and that this effect is exerted through impairment of AKT-mediated pathway. Moreover, evaluating a series of 52 HER2+ BC patients treated with adjuvant Trastuzumab, we observed that higher miR-205 expression is significantly associated with better outcome (disease-free survival). In summary, our data indicate that miR-205 could predict Trastuzumab efficacy and that its modulation might be useful as adjuvant treatment to improve the response to the drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...